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ABSTRACT

LeVeque and Yee recently investigated a one-dimensional scalar conservation law

with stiff source terms modeling the reacting flow problems and discovered that for the

very stiff case most of the current finite difference methods developed for non-reacting

flows would produce wrong solutions when there is a propagating discontinuity. A

numerical scheme, ENO/SRCI_ is proposed in this report for solving conservation laws
with stiff source terms. This scheme is a modification of Harten's ENO scheme with

subcell resolution, ENO/SR. The locations of the discontinuities and the characteristic

directions are essential in the design. Strang's time-splitting method is used and time

evolutions are done by advancing along the characteristics. Numerical experiment

using this scheme shows excellent results on the model problem of LeVeque and Yee.

Comparisons of the results of ENO, ENO/SR, and ENO/SRCD are also presented.
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1. INTRODUCTION

In the investigation of numerical methods for reacting flow problems, LeVeque

and Yee [4] recently considered certain fundamental questions concerning the quality

of numerical solutions. Namely, in extending current finite difference techniques de-

veloped for non-reacting flows to reacting flows, can one: (i) develop stable methods,

(ii) obtain "high resolution" results with sharp discontinuities and second order accu-

racy in smooth regions, and (iii) obtain the correct jumps at the correct locations?

They introduced and studied the following one-dimensional scalar conservation law

with parameter-dependent source term

1 (u 1),¢(u) = - 5) -

(1)

(2)

where/_ is a parameter. This equation becomes stiff when the parameter/_ is large.

Although this linear advection equation with a source term represents only a simple

model of reacting flow problems, by studying the numerical solutions one encounters

some of the intriguing difficulties sure to occur in solving more realistic models.

In their study, two different approaches were used to construct second order ac-

curate numerical methods. One approach was to use a modification of MacCormack's

predictor-corrector method for conservation laws, together with two TVD-like versions

with appropriate limiters. The other approach was based on the second order accurate

Strang splitting method [5]. Their numerical tests revealed that stable and second

order schemes can be devised by using either of these approaches. However, in study-

ing the ability of these methods in dealing with propagating discontinuities, it was

reported that for a fixed mesh and for the very stiff case, all the methods produced so-

lutions that look reasonable and yet are completely wrong, because the discontinuities

are in the wrong locations. Their investigation pointed out that the main difficulty is

the smearing of the discontinuity in the spatial direction, which in turn introduced a

nonequilibrium state into the calculation. To avoid this difficulty, it will be necessary

to increase the resolution near the discontinuity, at least for the purpose of evaluating

Integrating Eq. (1) over [zi_ {,xi+ _ ]x [t,z,t,_+l], one obtains

_ 1[ [*.+.
_+x =u_' _x [jr. u(xi+_,t)dt- J*. u(zy__,t) dt]

(3)1

where _ denotes the cell average of u over [x;__,x;._l] at t.. From this integral
J _ d_2 ,

equation formulation, one can see that a source oi error m also from the evaluation

of the double integral term in (3). Because in most numerical methods the function

V
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_(u) is replaced by ¢ evaluated at a fixed value of u. This may produce a reasonable

approximation only when u is smooth.

The purpose of this paper is to show that numerical methods can be devised

to overcome the above mentioned difficulties. We will construct a numerical scheme

which, when applied to Eq. (1), results in stable solutions with excellent resolutions
at the correct locations of the discontinuities. Essential to the construction of this

scheme is the application of Harten's ENO reconstruction with subcell resolution [2].

The subcell resolution is an idea based on the observation that unlike point values,

cell averages of a discontinuous piecewise smooth function contain information about

the exact location of the discontinuity within the cell. Using this observation in his

study of conservation laws, Harten [2] proposed reconstruction techniques and obtained

modifications of the ENO schemes [3] showing significant improvement in the resolution

of contact discontinuities. Basically, when good approximations to the exact locations

of the discontinuities inside the cells can be obtained, it is then possible to have good

reconstruction of the solution at each time step. Here we will also demonstrate that

when the information on the location of the discontinuity is used in treating the source

term, the results will improve significantly.

To maintain second order accuracy, we will use the approach of Strang's time-

splitting method [5] in which one alternates between solving the conservation law with-

out the source term and the ordinary differential equation modeling the chemistry. The

numerical solution v n+l at time step tn+l is computed from v n by

v,+l _ S¢(__) SI(At) at_ so(T)_-. (4)

where SI(At ) represents the numerical solution operator for the conservation law with-

out the source term over a time step At, and S¢(-z_) represents the numerical solution

operator for the ordinary differential equation

u, = ¢(u), (s)

over At/2. In terms of the integral equation formulation (3), Sf takes care of the

flux terms represented by the two single integrals at xi+], and S O handles the double
integral term.

We will outline the construction of the two operators SI and S 0 in section 2, which

depends on the characteristic directions as well as the ENO reconstruction with subcell

resolution procedure [2]. For the purpose of comparison, we will also test numerical

schemes which use a ENO and a ENO with subcell resolution as S I. These algorithms

will also be stated briefly in section 2. In section 3, we report the numerical results

obtained from using the above schemes on the same model problem of LeVeque and

Yee [4]. A conclusion will be given in section 4.

2. CONSTRUCTION OF THE SCHEMES

We first describe the structure of the operator SI(At). At the time step tn, suppose

that we have obtained the numerical solution v n = {v_}, where v_ represents an



approximation to the cell average u-jn. Then, to obtain S/(At) v", we use the following

steps:

1. Obtain a reconstruction R(x; v") from the given values v".

2. Modify this reconstruction R(z; v ") to obtain R(z; v _) using the subcell resolution

when discontinuity is detected.

3. Advance R(z;v '_) along the characteristics from tn to t,_+l and then take cell

averages to complete Sl,At ) v n.

In the scheme we propose, the steps 1 and 2 willfollow the basic ENO reconstruc-

tion procedure with subcell resolution of Harten [2].The reconstructed solution func-

tion R(x; vn) here isa piecewise quadratic polynomial obtained by using the primitive

function approach. For the sake of completeness, we will describe in straightforward

terms the procedures used. For more detailsand general discussionson reconstruction

and subcell resolution,see Harten [2].

Step 1. ENO Reconstruction

Over each cell [zj_½ ,zj+½], choose i = i(j) such that

IvS_- 2,?+1+ d'l = ._in {14% - 24'+1+ ,_1: _ = J - 2,j - 1,j).

Let Rj(x; v_) denote the reconstructed quadratic polynomial over thiscell.Then

1

Rj(x;,,") = aj + sj (x - xj) + _ cj (x - xj)_, (6)

where
_j = (_7+2- 2_7+1+ .7)/(a_)2,

1

sj = (_?+1- ,_')/A- + (J-i- 7)cj _,

_J = _7 - cJ(_x)2/24"

(7)

Step 2. Subcell Resolution

To detect a discontinuity in a cell [xj_}, xj+}], we define

iF,.(_)= _-_[ R;_,(_;,,") d_ + R;+_(_=;,,")dx]-_7. (8)

In the schemes we tested, the following criterion is used. If

I*jl> tsj-_l, I*jl> 18j+_l, and Fj(zj__) Fj(zj+½) < O, (9)

we consider that there is a discontinuity at ej in this cell satisfying

Fj(Oj)=o. (10)
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The location Oj can be approximated by using any standard root-finding method. We

simply use the bisection method in our experiment.

Now, if there is a discontinuity inside the cell, a modified reconstruction/?i(z; v '_)

is used , where

{ zj_ <_z < Oj,kj(X; tt") = R/.+l(X; l/n), 0 3" < X < X,3"A__ .

Otherwise, we use

= Rj(=;.").

Step 3. Time Evolution and Cell Averaging

Here we choose to describe the scheme for the conservation law

ut + aux -- O, a > O. (11)

It can be handled similarly for a < 0. Consider the case a At < Ax and that there

exists a discontinuity at 01 inside the cell [x 1_ ½, xi+]] with

0j <xi+ ]-aAt,

as shown in Fig. 1. The idea is that, following the characteristics from tn to tn+l, we

will find an approximation to

si(At),7- A= ,-
Ri_I (x; v n) dx + f]=i+

½

J Oj

--a At

Rj+x(x;vn) dx]. (12)

In our present scheme we use the following simple computation. Let x,, and xp denote

the midpoints in the intervals (x 1_ ½ - a at, Oj) and (Oj, xj+ ½ - a at) respectively (see

Fig. 1). Then compute

Sf(At) v_ = [Rj_l(Xm;V n) (Oj -- xj_½ q- aAt)

+Rj+i (zp; v") (zS+ ½ - a At - ej)]/A=. (13)

Other locations of 0i and the cases with smooth regions can be treated similarly and

easily. It is quite simple to modify the above scheme for more general equations and

also to write higher order versions of it.

Now, let us describe the operator S¢(At). It is essentially the approximation of

the double integral term in Eq.(3). Let us use the same notations introduced above

and refer to Fig. 1. To advance the value Rj_l(Xm;V n) from tn to tn+z, we again

follow the characteristics to obtain an approximate value

Rj-z(xm;v") + At¢(Rj-z(xm;vn)),

5



using the simple Euler's method. Let zm and zp denote the midpoints in the intervals

(xj__,Oi) and (Oj, xj+½) respectively. Then, for the case a > 0 and Oj <_ xj+_ - aAt,
we use

At

+ _b(Rj_xCxm;v") + At¢(Ry-x(xm;vn)))COy - xj_½ + aAt)

+ ¢(R;+,(z_; _")) (=;+_ - oi)
-t- ¢(Ri+l(Xp;v n) -t- At d2(Ri+l (Xp; vn))) (xj+x 2 -Oj --aAt)].

(14)

Again, other situations are handled similarly.

The resulting algorithm then takes the following form:

(is)

resolution,ENO/SR, of Harten [2] as the operator S!(At ).

Two things are essential in the design of the above algorithm, namely, the location

of the discontinuity 0i and the characteristic direction. We approximate 0 i by following

the ENO reconstruction with subcell resolution procedure. For this reason, we denote

this algorithm by ENO/SRCD. In applying this algorithm to Eq. (1), one takes the

value a = 1. In treating more general equations, the formulas in step 3 can be easily

modified.

For the purpose of comparison, we have tested several other schemes. We shall

report the results from using a ENO scheme and also a ENO scheme with subcell

The following version of

the ENO scheme has been used in [I].

ENO Scheme:

For the operator Sf(At), we use

At D

Sj(At) v_ = v; -- A-_ (fJ+} -- fY-ax)' (16)

where

with

-:ENO

7j+_= li+l
1

: _[fR(£]y(Xy+},tn),_y+l(Xy+],tn))

-I-fR (£,'y (xy+ } ,tn+l),_j+l(Zj+},tn+l))],

Az

oJ(=i+{'t") = "7 + -T 'j'
Ax

_i+1 (=_'+½, t,,) = v"i+I 2 aj+l,

Ax

_i(=;+_,t.+_) = ,,7 + --y ,; - at,,.;,
Ax

VJ+l(ZJ+l'tn+l) = V_+l 2 Sj+l - Atasj+l,

(17)
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where the sy's used in the computation come from (7) in step 1, a = 1 for Eq.(1), and

fR(vL, VR) denotes the flux at the origin in a Riemann problem with vn to the left and

vR to the right.

In [2], there is a simpler version of second order ENO scheme. The difference is

from the appr_imation of the two single integrals at zy±_ in Eq.(3). The ENO in [2]

uses a midpoint rule to do the approximation, while a trapezoidal rule is used in the

above formulation. Since in our test Eq.(17) produces slightly better computational

results, we choose to report it here. The operator S¢(At) will be the same as in Eq.(14)

and the final algorithm also takes the same form as in Eq.(15).

ENO/SR Scheme:

The operator SI(At) is now replaced by Harten's second order ENO scheme with

subcell resolution [2]. The entire algorithm is denoted here also by ENO/SR. The

construction of Sf(At) is described again for Eq.(11) in the form of Eq.(16) with

_- o +
-:ENO

where fi+½ will be the same as in Eq.(17) and the correction term gi-_-] is computed
as follows. If the discontinuity contion (9) is not satisfied, then

else

gj+_ =

a (t,, - 1) (2v - 1) cI (Ax) 2, u = a At/Az;

[(Ax-- a At)(v'_ -- a At sy /2) -- b i-l(xy_],xj+x 2 - a At)]�At,

when Fj(z_.+½ -aAt)Fj(xj_½) > O,

[bj+,(zy+_ -aAt, zj+_) -aAt(v'_ + (Ax-aAt)sj/2)]/At,

otherwise,

and the expression bi(yl,y2 ) is used to mean

f"b (yl,y2) =
!

In the above formulas, all the at's, si's, and cj's come from (7) in step 1. We also use

the same operator S,p(At) from (14) and the final algorithm again takes the formal

form of (15).

3. COMPUTATIONAL RESULTS

We use the same mesh and initial data as in the model problem of LeVeque and Yee

[4] to test the ability of the above schemes in dealing with propagating discontinuities.

Thus Eq.(1) is solved together with the initial condition

S 1, if z _< 0.3,
_(_, O) IO, if x > 0.3.



We take Ax = 0.02, At = 0.015, and the domain in x to be from 0 to I. For

comprison with [4],we also show the results at t = 0.3 and for the cases/_ = 1, 10,

100, and 1000. Figure 2 shows the computed resultsusing the ENO, ENO/SR, and

ENO/SRCD schemes for/_ -- 1, 10, and 100. For the very stiffcase, # - 1000, both

ENO and ENO/SR schemes failto produce stable solutions for the above mesh in

our computational experiment. Only the ENO/SRCD scheme stillproduces excellent

resultsas shown in Fig. 3. However, when we reduce the sizeof At to one half of the

original,i.e.,At = 0.0075, and march 40 time steps,excellentresultsaxe again obtained

from both ENO and ENO/SR schemes as shown in Fig. 4. Of course, reducing At

means the reduction of the stiffnessof the system. The difficultyarisesfrom the fact

that in both the ENO and ENO/SR schemes, the computation of the numerical flux
ENO

j+½ still produces "large " error in the spatial direction.

The computational results obtained here compare favorably to those in LeVeque

and Yee [4].

4. CONCLUSIONS

We have proposed a numerical scheme ENO/SRCD, which is a modification of

Harten's ENO scheme with subcell resolution ENO/SR, for solving conservation laws

with stiff source terms. We use Strang's time-splitting method and treat the conserva-

tion law without the source term and an ordinary differential equation with the source

term representing the chemistry sequentially. For both the conserwtion law solution

operator S I and the ordinary differential equation solution operator Se, the locations
of the discontinuities and the characteristic directions are essential in their design. The

main difference between the construction of this S I and that of Harten's ENO/SR is

that the time evolution here is accomplished by advancing along the characteristics
--zEN O

explicitly, while ENO/SR uses the numerical flux fj+½ followed by a correction term
based on the location of the discontinuity. The operator Se for the ordinary differen-

tial equation also advances along the characteristics. Our numerical experiment using

this scheme shows excellent results on the model problem of LeVeque and Yee [4] for

reacting flows. Comparisons of the results of ENO, ENO/SR, and ENO/SRCD have

also been presented.
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